热塑性塑料品种每繁多,即使同一品种也由于树脂分子及附加物配比不同而使其使用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交联等各种化学方法在原有的树脂结构中导入一定百分比量的其它单体或高分子等,以改变原 有树脂的结构成为具有新的改进物性和加工性的改性产品。
例如,ABS即为在聚苯乙烯分子中导入了丙烯腈、丁二烯等第二和第三单体后成为改性共聚物,可看作称改性聚苯乙烯,具有比 聚苯乙烯优异综合性能,工艺特性。
1.塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大, 收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热 固性塑料大。
2.塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。所以壁厚、冷却 慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。
3.进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作 用及成型时间。直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进 料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。
模具设计时根据各种塑料的收缩范围,塑件壁厚、形状,进料口形式尺寸及分布 情况,按经验确定塑件各部位的收缩率,再来计算型腔尺寸。对高精度塑件及难以掌握收 缩率时,一般宜用如下方法设计模具:
1.热塑性塑料流动性大小,一般可从分子量大小、熔融指数、阿基米德螺旋线流动长 度、表现粘度及流动比(流程长度/塑件壁厚)等一系列指数进行分析。分子量小,分子量 分布宽,分子结构规整性差,熔融指数高、螺流动长度长、表现粘度小,流动比大的则流 动性就好,对同一品名的塑料必须检查其说明书判断其流动性是否适用于注塑成型。按模 具设计要求大致可将常用塑料的流动性分为三类:
在模具设计及选择注塑机时应注意对结晶型塑料有下列要求及注意事项:
热敏性系指某些塑料对热较为敏感,在高温下受热时间较长或进料口截面 过小,剪切作用大时,料温增高易发生变色、降解,分解的倾向,具有这种特性的塑料称 为热敏性塑料。
如硬聚氯乙烯、聚偏氯乙烯、醋酸乙烯共聚物,聚甲醛,聚三氟氯乙烯等。热敏性塑料在分解时产生单体、气体、固体等副产物,特别是有的分解气体对人体、设备、 模具都有刺激、腐蚀作用或毒性。
因此,模具设计、选择注塑机及成型时都应注意,应选 用螺杆式注塑机,浇注系统截面宜大,模具和料筒应镀铬,不得有死角滞料,必须严格控 制成型温度、塑料中加入稳定剂,减弱其热敏性能。
有的塑料对应力敏感,成型时易产生内应力并质脆易裂,塑件在外力作用下或 在溶剂作用下即发生开裂现象。为此,除了在原料内加入添加剂提高开抗裂性外,对原料应 注意干燥,合理的选择成型条件,以减少内应力和增加抗裂性。并应选择合理的塑件形状, 不宜设置嵌件等措施来尽量减少应力集中。
模具设计时应增大脱模斜度,选用合理的进料口及顶 出机构,成型时应适当的调节料温、模温、注塑压力及冷却时间,尽量避免塑件过于冷脆 时脱模,成型后塑件还宜进行后处理提高抗开裂性,消除内应力并禁止与溶剂接触。
各种塑料有不同比热、热传导率、热变形温度等热性能。比热高的塑化时需要 热量大,应选用塑化能力大的注塑机。热变形温度高塑料的冷却时间可短,脱模早,但脱模后 要防止冷却变形。热传导率低的塑料冷却速度慢(如离子聚合物等冷却速度极慢),故必须充分冷 却,要加强模具冷却效果。
热浇道模具适用于比热低,热传导率高的塑料。比热大、热传 导率低,热变形温度低、冷却速度慢的塑料则不利于高速成型,必须选用适当的注塑机及加 强模具冷却。
各种塑料按其种类特性及塑件形状,要求必须保持适当的冷却速度。所以模具 必须按成型要求设置加热和冷却系统,以保持一定模温。当料温使模温升高时应予冷却, 以防止塑件脱模后变形,缩短成型周期,降低结晶度。
当塑料余热不足以使模具保持一定 温度时,则模具应设有加热系统,使模具保持在一定温度,以控制冷却速度,保证流动性, 改善填充条件或用以控制塑件使其缓慢冷却,防止厚壁塑件内外冷却不匀及提高结晶度等。
对流动性好,成型面积大、料温不匀的则按塑件成型情况有时需加热或冷却交替使用或局 部加热与冷却并用。为此模具应设有相应的冷却或加热系统。